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Abstract—The article discusses a method for early detection and prediction of abnormality in operation of
power-unit process equipment taking as an example the PTN 1100-350-17-4 turbine driven feedwater pump
of a 300 MW power unit. The importance of the problem of predicting possible process equipment malfunc-
tions at an early state of their occurrence is determined, and the specific features of solving it in the power
industry are explained. The range of process equipment defects that can be efficiently detected using the pre-
dictive analytics methods is outlined. The fundamental assertion stating that the scope of analog and discrete
measurements available in the process control system’s set of computerized automation tools is sufficient for
applying the predictive analytics methods is emphasized. Modern predictive analytics methods are briefly
reviewed, and the specific features of model training algorithms are mentioned. Separate attention is paid to
the problems of preparing initial data for training the model. The mathematical problem of modeling an
abnormality indicator taking the values from 0 (normal operation) to 1 (abnormal operation) is formulated.
In turn, this problem is formulated as the binary classification problem of attribute vectors characterizing the
equipment state at the given moment of time. An original approach is suggested, which combines the multi-
variate state estimation technique (MSET), in which the degree of abnormality in a technical state is deter-
mined from the extent to which the Hotelling criterion exceeds a threshold level (which is automatically cal-
culated in the algorithm), and machine learning methods, the use of which makes it possible to overcome a
number of difficulties inherent in the MSET. For solving the problem of determining the composition of the
most informative attributes from the values of which early development of an emergency can be detected, it
is proposed to use an ensemble of regression models. A method for selecting the modeled variable and the set
of regressors is substantiated. An abnormality indicator calculation method based on composing an ensemble
of linear regression models is proposed, and the advantage of using an ensemble over a single classifier is
shown. A method for producing an alarm in response to detected abnormality in the operation of power unit
process equipment is suggested. It is shown that it became possible by using the proposed model to detect the
onset of the emergency development process, whereas individual indicators failed to reveal pump operation
singularities in the preemergency interval of time.
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tic regression
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In the period of actively using process equipment,
events (accidents) that may adversely affect it or cause
its failure inevitably occur. A model able to predict the
future emergency would make it possible to timely take
measures for eliminating it, thus helping to achieve
more efficient use of process equipment. Develop-
ment and investigation of such models is the subject of
predictive analytics [1, 2].

Against the background of the predictive analytics
methods being widely used in various areas of human
activity (financial services, insurance, telecommunica-
tions, trade, health care, etc.), the advances of predic-
tive analytics in the power industry look rather modest.
There is a simple explanation for this fact. For almost

the century-long history of the power industry in Rus-
sia, power engineers have defined the scope of mea-
sured parameters characterizing the state of power
equipment that allows failure-free operation of the
equipment to be maintained subject to fulfilling all nec-
essary conditions (operational regulations). In the over-
whelming majority of cases, measures that must be
taken to prevent a malfunction or an accident from
occurring do not involve the need of using any special
methods but are carried out in response to certain
recorded measurements (when warning or emergency
alarms come in action). The occurring accidents are
primarily due to failure to follow the equipment opera-
tion rules and regulations or due to external influencing
189
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factors (accidents in the power grid, natural phenom-
ena, human factor, etc.), which cannot be foreseen.

Nonetheless, it can be assumed with a large degree
of confidence that there are defects that lead to an
accident unless if they are timely removed. The incip-
ience and development of such defects is not revealed
by means of individual measurements, but they can be
diagnosed using the predictive analytics methods from
the behavior of a certain totality of measured parame-
ters [3]. In this connection, there is a need to develop
mathematical models able to predict the occurrence of
emergencies in advance.

It is important to note that the application of pre-
dictive analytics methods for power unit equipment
does not involve the need to install new sensors (the
scope of necessary measurements is specified by
equipment manufacturers, power unit designers, and
power plant process engineers).

The basic idea of predictive analytics is that the
occurrence of an accident can be predicted with cer-
tain probability by continuously analyzing the data
characterizing the performance of the equipment
being monitored. The prediction can be regarded as
effective if it was done a few days before the accident.

The modern trends in predictive analytics combine
the methods of statistical and intellectual analysis of
data with the use of learned algorithms [4]. They are
inherent in all of the presently available predictive ana-
lytics methods applied in thermal power engineering
and imply preliminary “teaching” of the model on the
basis of available input data. Such input data include
“historical” values of measured parameters character-
izing the operation of particular process equipment;
these data are taken from the archives stored in the
power unit process control system’s set of computer-
ized automation tools for a long time of power unit
operation (usually 1–3 years). In addition, data about
the defects (malfunctions) revealed for this period of
time, which can lead to an accident unless having been
removed, are also used. The equipment operation
periods of time with and without such defects are
called abnormal and normal, respectively.

Learning algorithms are determined by the predic-
tive analytics methods. For example, the regression
model method uses learning intervals for establishing
the regression coefficients and the calculated criterion
threshold (the model output parameter) classifying
the equipment operation time (normal/abnormal).
The method of artificial neural networks tunes the
weighing coefficients of neurons on learning intervals.

It should be noted that adequate data on the defects
of diagnosed equipment are of key importance for
elaborating a high-quality predictive model. Unfortu-
nately, the experience we have gained in dealing with
the input data on the power units from different power
plants shows that almost all defect logs have the same
essential deficiencies: not all defects are recorded, and
their dates correspond, in the best case, to the time of
their revealing (and not the time of their occurrence).
As regards the dates at which the revealed defects were
removed, such information is often lacking.

Some of the modern computerized automatic con-
trol toolsets installed at power plants may include built-
in systems performing early failure diagnostic functions.
These systems are, as a rule, based on statistical abnor-
mality detection models operating according to the fol-
lowing principle: if the equipment current state differs
essentially from its state typical for normal operation
mode, this is a sign of abnormal operation [5]. The
drawbacks of these systems are, on the one hand, that
they frequently detect an abnormality too late when
there is already no time for removing it and, on the
other hand, that they produce a significant number of
false warnings about a possible accident.

In this article, we propose a method for detecting
abnormalities in plant operation that uses the idea of
the MSET technique [6] jointly with using the
machine learning models by means of linear and logis-
tic regression1.

STATEMENT OF THE PROBLEM
The plant operation at each moment of time t is

described by the vector of indicators x(t) =
, where m is the number of indicators

and T is the number of accomplished measurements.
In carrying out its measurements by means of a mon-
itoring system at a certain step Δt (e.g., 5 min), a
sequence of vectors united into the matrix

 is obtained.

Each moment of time t,  is related by an
expert to one of two classes, one of which corresponds
to normal operation, and the other to abnormal
(preemergency or emergency) state of the plant.
Denoting the class tag at the time moment t as y(t)
(y(t) = 0 for the normal state and y(t) = 1 for the emer-
gency state), we write the vector of tags as follows:

Now, to develop a model from the composition of
available measurements, it is necessary to determine
the output variable and the input variables that
“explain” it. Models developed according to the
MSET technique are related to the class of “self-asso-
ciative” ones, in which the sets of input and output
parameters used to construct a regression model in the
plant normal operation mode coincide with each other
[6, 7]. Such models are especially suitable under the
physical conditions in which the observed parameters,
on the one hand, are closely interconnected and, on
the other hand, it is difficult or unreasonable to sepa-

1 The MSET abbreviation stands for the multivariate state estima-
tion technique. According to the MSET technique, the degree of
abnormality in a technical state is determined by the extent to
which the Hotelling criterion exceeds a threshold level automat-
ically calculated by the algorithm.

[ ]1( ),..., ( ) T
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rate explaining and explained parameters from them
as is done in constructing cause-and-effect models.
The composition of these variables determines in
many respects the predictive properties of model error
deviations from the observed values. It is reasonable to
assume that the model’s output variables depend not
only on the observed plant indicators but also on
derivative indicators, which are not explicitly mea-
sured (e.g., relative quantities, derivative quantities,
etc.). The problem of shaping a new extended compo-
sition of indicators  based on the initial indi-
cators  involves the need to engage experts and
to understand which particular derivative indicators
could be sensitive to development of an accident.

Another problem relating to the MSET technique
is connected with calculating the degree to which the
plant operation deviates from its normal mode. In the
classic version of the MSET technique [6], the deci-
sion about abnormality is made based on the results of
comparing the outputs obtained from the constructed
regression model with the modeled quantity’s
observed values. In practice, high mismatches do not
always mean that there is an accident, and vice versa,
some types of preemergency situations do not always
manifest themselves in a growth of mismatches.

The task we set forth in this study is to construct
ensembles of regression models [8, 9] that use different
compositions of input and output variables and mod-
els for calculating the abnormality indicator. Each
model within an ensemble calculates its own plant
operation abnormality indicator pi(t) at the time
moment t for  , where N is the number
of models in the ensemble. The final decision p(t) is
made in accordance with the ensemble decision rule.

At each moment of time, the abnormality indicator
p(t) takes a value from the interval (0; 1). Values close
to 0 correspond to normal operation of the plant, and
values close to 1 correspond to its abnormal operation.

ABNORMALITY INDICATOR
CALCULATION METHOD

The proposed algorithm for calculating the plant
operation abnormality indicator includes the follow-
ing steps.

1. The attributes  are composed proceed-
ing from the observed plant operation indicators

, and their values  at
each moment of time t,  are calculated. As a
result, a sequence of vectors united into the matrix

 is obtained. Thus, the indicator
values matrix Z of the dimension  and the vector
of tags y of the dimension T constitute the input data
array D for constructing the predictive model.

1,..., Mz z
1,..., mx x

= 1, ,t T = 1,i N

1,..., Mz z

1,..., mx x [ ]= 1( ) ( ),..., ( ) T
Mz t z t z t

= 1,t T

[ ]= (1),..., ( )Z z z T
×M T
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In this study, we consider the PTN 1100-350-17-4
turbine driven feedwater pump (TFWP) of a 300-MW
power unit as the monitored equipment set under study.

The following composition of pump indicators
 at the time moment t was selected pro-

ceeding from the opinions of experts:
(i) the observed values  (e.g., lubrica-

tion oil temperature and pressure, turbine bearings
vibration velocities, steam temperature and pressure at
the TFWP inlet and outlet, etc.); and

(ii) the values  normalized for the

feedwater f lowrate  i.e.,  in the

given case, M = 2m.
2. The initial sampling D is decomposed into non-

overlapping sets: two training samples Dtr1, Dtr2 and one
test sample Dtst,  which are
selected in a random manner in a specified ratio. The
sets of the corresponding moments of time are denoted
by Ttr1, Ttr2 and Ttst,  The
training sample Dtr1 is used to construct regression
models; the sample Dtr2 is used to construct models for
calculating the plant operation abnormality indicator,
and the sample Dtst is used for finally testing the model.

3. At this step, K linear regression models are con-
structed from the training sample Dtr1 data, and the
model errors are calculated using the sample Dtr2 data.
Let  and  be the output (modeled) variable and the
set of model inputs (regressors), respectively, for the
kth regression model,  and  is a certain
subset of attributes  that does not contain the
modeled attribute   Then, the kth regres-
sion model will have the following form:

where ϕk is the regression function linear with respect
to the attributes  and ek is the model error.

The modeled attribute  and the composition of
regressors  are selected for each regression model in a
random manner. For example, for one model, the
steam pressure at the TFWP outlet was adopted as the
output variable, and the bearing horizontal and vertical
vibration velocities and the steam temperature and
pressure at the TFWP inlet were taken as the input vari-
ables. For another model, the first bearing’s horizontal
vibration velocity was taken as the output variable, and
the temperatures of turbine thrust bearings, the lubrica-
tion oil pressure, and steam temperature at the TFWP
inlet and outlet were taken as the input variables.

Owing to random selection of the modeled variable
and the set of regressors, it becomes possible to avoid
the need to engage experts in constructing the regres-
sion models at this stage. At the same time, if the com-
position of these variables has been selected unfortu-
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nately, i.e., exact modeling of the output variable is
impossible, such models are rejected, and the compo-
sition of variables is played out again. The model accu-
racy is estimated from the determination coefficient
on the training sample Dtr1.

The parameters of linear regression functions
 were determined using the least squares

method [10].
We introduce the following notation: e(t) =

, where  are the
vectors of deviations between the regression model
outputs and the observed values at the time moment t,

. As a result, we obtain the deviation matrix E of
the dimension  composed of the vectors e(t),

4. The matrix E data and the corresponding tags of
classes at the time moments t,  are used to train
the ensemble of N binary classifiers represented by the
selected logistic regressions2. Each binary classifier
operates in its own space of attributes, which consists
of randomly selected regression remainders obtained
at the previous step. Thus, each binary classifier solves
its own classification problem; i.e., it relates the vector
of regression remainders arriving at its input to one of
two classes: normal or abnormal operation. For exam-
ple, the input of the first classifier receives the regres-
sion remainders obtained in modeling steam pressure at
the TFWP outlet and the horizontal vibration velocity
of the first bearing, whereas the input of the second
classifier receives the regression remainders obtained in
modeling the temperature of turbine thrust bearings,
steam temperature at the TFWP inlet and outlet, etc.

It has experimentally been shown that individual
classifiers provide insufficient accuracies. It is not
possible to say—based solely on the values of regres-
sion remainders arriving to the input—whether a sys-
tem is in the normal or emergency (preaccident) mode
of its operation. Nonetheless, the accuracies of indi-
vidual classifiers are better than they are during ran-
dom classification, which makes it possible to unite
them into an ensemble of classifiers. In [11], it is
shown that, under certain conditions, the ensemble
operation accuracy outperforms the accuracies shown
by the classifiers it consists of (weak classifiers).

The mathematical model of the ith weak classifier
is given by

where pi is the output of the ith weak classifier,
 ψi is the regression function linear with

2 The term “classifier” is understood to mean an algorithm that
tries to predict, proceeding from the data known to it, which of
the predetermined classes the new data will be related to. A weak
classifier performs classification with an error probability lower
than in the case of mere guessing (0.5 for binary classification). 
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respect to the attributes εi; and εi is a subset of the set
of attributes 

The composition of regressors εi for each weak
classifier was selected in a random manner. With such
selection, there is no need to engage expert knowl-
edge, and it is possible to form a set of weak classifiers
for uniting them into a committee. The advantage of a
committee of classifiers over a single classifier the
input of which would receive all of the obtained
remainders  is that it is more robust, a feature
due to which it can be tuned less exactly for a particu-
lar set of input attributes, which were also obtained as
a result of random selection of regressors at step 3.

If the space of input variables for a weak classifier
was selected unsuitably; i.e., the manner in which it
separates data belonging to two classes is almost the
same as with random separation, such weak classifiers
are rejected, and the composition of input variables is
played out anew. The values of the AUC ROC indica-
tor on the training sampling Dtr2 were used as the
classes separation measure [12].

The weak classifier’s outputs vector at the time
moment t is denoted as , where
pi(t) is the output of the ith weak classifier at the time
moment t, . As a result, the abnormality indica-
tors matrix P with the dimension  composed of
the vectors p(t),  is obtained.

5. The matrix P data and the corresponding tags at
the time moments t,  are used to construct the
ensemble Φ decision rule:

where p is the resulting abnormality indicator.
In the simplest case, simple averaging of the weak

classifiers’ outputs can be used as the decision rule.
However, since individual weak classifiers may intro-
duce different contributions in the final decision, and
since they may have different accuracy indicators and
generalizing abilities, the following logistic regression
model is used as the decision rule Φ:

where  are the model’s adjustable parameters
calculated using the maximum likelihood method [13].

The logistic regression input is configured to
receive the weak classifiers’ outputs  and the
resulting indicator p is modeled at its output.

The proposed model is schematically shown in Fig. 1.
After constructing the ensemble (with training all

regression models, all weak classifiers, and the deci-
sion rule), it is tested on the test sampling Dtst data, and
the behavior of the calculated abnormality indicator
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Fig. 1. Structure of the model for calculating the plant operation abnormality indicator. RM is a regression model and LR is a
logistic regression. 
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Fig. 2. Feedwater f lowrate Qfw versus the time interval before the emergency (condensate leak to the slip nut) (2014). 1—Start of
the preemergency interval; and 2—emergency. 
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EXPERIMENTAL INVESTIGATION RESULTS

Experimental investigations were carried out using
the historical data on the operation of a 300 MW
power unit’s feedwater pump recorded for 3 years. At
each moment of time, m = 45 pump operation indica-
tors (e.g., oil pressure, bearing vibration velocity,
steam temperature, etc.) were recorded at Δt = 5 min
intervals. After excluding the time moments at which
the pump was in the disconnected state, the number of
time readings made T = 39 629. During the considered
period of time, four defects in the pump operation
were recorded: overheating of the driving turbine
thrust pads, leak to the cover from the bearing side,
and leak of condensate to the slip nut and to the end-
face cover on the startup device side. For each mal-
function, the moment of its recording is known (to an
accuracy of 1 day). The class tags vector y was formed
THERMAL ENGINEERING  Vol. 66  No. 3  2019
in the following way: the values of y(t) were taken
equal to 1 for all moments of time starting from noon
of the second day before recording the defect and end-
ing with noon of the second day after it; all other tags
were taken equal to 0. Figure 2 shows a fragment of the
input data before one of the failures.

The set of all moments of time is subdivided into
subsets Ttr1, Ttr2, and Ttst in the ratio 40/40/20. That is,
40% of all available time readings randomly fall in the
training samples Ttr1 and Ttr2, and 20% of them fall in
the test sample Ttst.

Based on the observed pump indicators ,
its derivative indicators  M = 89 were calcu-
lated, which were used for constructing K = 50 regres-
sion models. The modeled variable and the composi-
tion of regressors were selected in each model in a ran-
dom manner. If the regression model’s determination
coefficient R2 (which is interpreted as the extent to
which the model corresponds to the data) on the train-
ing sample Dtr1 was found to be less than 0.7, such a

1,..., mx x
1,..., ,Mz z
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Fig. 3. Pump operation abnormality indicator versus time before emergency (2014). 1—Start of the preemergency interval; 2—emer-
gency; and 3—“filtered”/smoothed abnormality indicator. 
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model was rejected. The average value of the determi-

nation coefficients R2 of the constructed models is
equal to 0.98 (the rms. deviation is equal to 0.04) on
the training sample Dtr1 and 0.97 (the rms deviation is

equal to 0.07) on the sample Dtr2 (which served as the

test one for these models). It follows from the obtained
values that the constructed regression models have a
good generalizing ability on average; that is, the error
probability on the test sample does not differ signifi-
cantly from the error on the training sample.

For each regression model, the modeling errors

ek(t),  were calculated at each moment of time

t,  the values of which were used to construct
N = 20 weak classifiers (logistic regressions). The
number and composition of regressors for each logistic
regression were selected in a random manner. If the
quantitative interpretation of weak classifier quality
(the AUC ROC indicator) on the training sample Dtr1

was found to be less than 0.6, such classifier was
rejected. The average value of the AUC ROC indica-
tors of the constructed classifiers is equal to 0.95 (the
rms deviation is 0.08) on the training sample Dtr2 and

0.94 (the rms deviation is 0.11) on the test sample Dtst.

It follows from the obtained values that the con-
structed weak classifiers have a good generalizing abil-
ity on average.

The weak classifiers’ outputs obtained on the train-
ing sample Dtr2 were then used for training the logistic

regression. The achieved value of the trained regression

= 1,k K
∈ 2,trt T
model’s indicator AUC ROC is equal to 0.99 on the
training sample Dtr2 and 0.98 on the test sample Dtst.

Figure 3 shows the graphic dependence of the
pump abnormality indicator p observed at the logistic
regression model output during the preemergency
interval of time.

As is seen from the graph, the abnormality indica-
tor value begins to show a steady growth already on the
morning of June 3, whereas the emergency interval in
the training sample started only from noon on June 4.
The early trend toward a growth of the indicator values
testifies that the calculated indicator has a predictive
ability.

The personnel operating the power unit equipment
did not reveal any singularities in the behavior of indi-
vidual pump performance indicators in the preemer-
gency time interval (in particular, neither the emer-
gency nor the preemergency state has any effect on the
indicator shown in Fig. 2).

An alarm should be triggered when the abnormality
indicator exceeds the preset limit (p > plim). The follow-

ing notes should be mentioned in regard to this alarm:

(1) The value of plim must be established in the

course of equipment pilot operation and must ensure
almost guaranteed absence of false alarms.

(2) To decrease the probability of false alarms, the
discrete signal p > plim must trigger an alarm with a

time delay of approximately a few hours in response to
the leading edge or the abnormality indicator must be
THERMAL ENGINEERING  Vol. 66  No. 3  2019
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smoothed by using filters (an inertial section or a mov-
ing average filter).

(3) The discrete signal p > plim shall only be used to

trigger an alarm. The decision to disconnect or shut-
down the equipment must be made by the power plant
personnel.

CONCLUSIONS

(1) An ensemble of regression models has been
used for solving the MSET technique key problem
concerned with selecting the composition of input and
output variables used to construct a regression model.
A logistic regression model has been applied for calcu-
lating the resulting abnormality indicator.

(2) A model featuring good generalizing and predic-
tion abilities (AUC ROC ≈ 0.98) has been constructed
as a result of carrying out experimental investigations of
the proposed method using the actual data on operation
of the PTN 1100-350-17-4 feedwater pump. The
obtained results give grounds for using the proposed
model as a basis for developing a system for monitoring
the plant state and predicting future emergencies.

(3) The proposed method needs additional appro-
bation on other archived samples, in off-line and
online modes on current data, sophistication in regard
to predicting the timeframes of reaching preemer-
gency and emergency technical state and determining
particular defect causing factors.
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